
Introduction

Inheritance Concept

2

 class Rectangle{

 private:

 int numVertices;

 float *xCoord, *yCoord;

 public:

 void set(float *x, float *y, int nV);

 float area();

 };

Inheritance Concept

Rectangle
Triangle

Polygon

 class Polygon{

 private:

 int numVertices;

 float *xCoord, *yCoord;

 public:

 void set(float *x, float *y, int nV);

 };

 class Triangle{

 private:

 int numVertices;

 float *xCoord, *yCoord;

 public:

 void set(float *x, float *y, int nV);

 float area();

 };

3

Rectangle
Triangle

Polygon
class Polygon{

 protected:

 int numVertices;

 float *xCoord, float *yCoord;

 public:

 void set(float *x, float *y, int nV);

};

class Rectangle : public Polygon{

 public:

 float area();

};

class Rectangle{

 protected:

 int numVertices;

 float *xCoord, float *yCoord;

 public:

 void set(float *x, float *y, int nV);

 float area();

};

Inheritance Concept

4

Rectangle
Triangle

Polygon

class Polygon{

 protected:

 int numVertices;

 float *xCoord, float *yCoord;

 public:

 void set(float *x, float *y, int nV);

};

class Triangle : public Polygon{

 public:

 float area();

};

class Triangle{

 protected:

 int numVertices;

 float *xCoord, float *yCoord;

 public:

 void set(float *x, float *y, int nV);

 float area();

};

Inheritance Concept

5

Inheritance Concept

Point

Circle 3D-Point

class Point{

 protected:

 int x, y;

 public:

 void set (int a, int b);

};

class Circle : public Point{

 private:

 double r;

};

class 3D-Point: public Point{

 private:

 int z;

};

x

y

x

y

r

x

y

z

6

• Augmenting the original class

• Specializing the original class

Inheritance Concept

RealNumber

ComplexNumber

ImaginaryNumber

Rectangle
Triangle

Polygon Point

Circle

real

imag

real imag

3D-Point

7

Why Inheritance ?

Inheritance is a mechanism for

• building class types from existing class types

• defining new class types to be a

– specialization

– augmentation

 of existing types

8

Define a Class Hierarchy

• Syntax:

 class DerivedClassName : access-level BaseClassName

 where

– access-level specifies the type of derivation

• private by default, or

• public

• Any class can serve as a base class

– Thus a derived class can also be a base class

9

Class Derivation

Point

3D-Point

class Point{

 protected:

 int x, y;

 public:

 void set (int a, int b);

};

class 3D-Point : public Point{

 private:

 double z;

 … …

};

class Sphere : public 3D-Point{

 private:

 double r;

 … …

};

Sphere

Point is the base class of 3D-Point, while 3D-Point is the base class of Sphere

10

What to inherit?

• In principle, every member of a base class is

inherited by a derived class

– just with different access permission

11

Access Control Over the Members

• Two levels of access control

over class members

– class definition

– inheritance type

base class/ superclass/

parent class

derived class/ subclass/

child class

d
e
ri
v
e
 f

ro
m

m
e
m

b
e
rs

 g
o
e
s
 t
o

class Point{

 protected: int x, y;

 public: void set(int a, int b);

};

class Circle : public Point{

 … …

};

12

• The type of inheritance defines the access level for the

members of derived class that are inherited from the base

class

Access Rights of Derived Classes

private protected public

private - - -

protected private protected protected

public private protected public

Type of Inheritance

A
ccess C

o
n

tro
l

fo
r M

e
m

b
ers

13

class daughter : --------- mother{

 private: double dPriv;

 public: void mFoo ();

};

Class Derivation
class mother{

 protected: int mProc;

 public: int mPubl;

 private: int mPriv;

};

class daughter : --------- mother{

 private: double dPriv;

 public: void dFoo ();

};

void daughter :: dFoo (){

 mPriv = 10; //error

 mProc = 20;

};

private/protected/public
int main() {

 /*….*/

}

class grandDaughter : public daughter {

 private: double gPriv;

 public: void gFoo ();

};

14

What to inherit?

• In principle, every member of a base class is

inherited by a derived class

– just with different access permission

• However, there are exceptions for

– constructor and destructor

– operator=() member

– friends

 Since all these functions are class-specific

15

Constructor Rules for Derived Classes

 The default constructor and the destructor of the
base class are always called when a new object
of a derived class is created or destroyed.

class A {

 public:

 A ()

 {cout<< “A:default”<<endl;}

 A (int a)

 {cout<<“A:parameter”<<endl;}

};

class B : public A

{

 public:

 B (int a)

 {cout<<“B”<<endl;}

};

B test(1);
A:default

B

output:

16

Constructor Rules for Derived Classes

 You can also specify an constructor of the
base class other than the default constructor

class A {

 public:

 A ()

 {cout<< “A:default”<<endl;}

 A (int a)

 {cout<<“A:parameter”<<endl;}

};

class C : public A {

 public:

 C (int a) : A(a)

 {cout<<“C”<<endl;}

};

C test(1);
A:parameter

C

output:

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass

args)

 { DerivedClass constructor body }

17

Define its Own Members

Point

Circle

class Point{

 protected:

 int x, y;

 public:

 void set(int a, int b);

};

class Circle : public Point{

 private:

 double r;

 public:

 void set_r(double c);

};

x

y

x

y

r

class Circle{

 protected:

 int x, y;

 private:

 double r;

 public:

 void set(int a, int b);

 void set_r(double c);

};

The derived class can also define
its own members, in addition to
the members inherited from the
base class

18

Even more …

• A derived class can override methods defined in its parent

class. With overriding,
– the method in the subclass has the identical signature to the method

in the base class.

– a subclass implements its own version of a base class method.

class A {

 protected:

 int x, y;

 public:

 void print ()

 {cout<<“From A”<<endl;}

};

class B : public A {

 public:

 void print ()

 {cout<<“From B”<<endl;}

};

19

class Point{

 protected:

 int x, y;

 public:

 void set(int a, int b)

 {x=a; y=b;}

 void foo ();

 void print();

};

class Circle : public Point{

 private: double r;

 public:

 void set (int a, int b, double c) {

 Point :: set(a, b); //same name function call

 r = c;

 }

 void print(); };

 Access a Method

 Circle C;

 C.set(10,10,100); // from class Circle

 C.foo (); // from base class Point

 C.print(); // from class Circle

Point A;

A.set(30,50); // from base class Point

A.print(); // from base class Point

